Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module

Kuo Li and Zhenming Xu (2015)

Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module

Environmental Science and Technology, 49:1761-1767.

Waste Memory Modules (WMMs), a particular kind of waste printed circuit board (WPCB), contain a high amount of brominated epoxy resin (BER), which may bring a series of environmental and health problems. On the other hand, metals like gold and copper are very valuable and are important to recover from WMMs. In the present study, an effective and environmental friendly method using supercritical water (SCW) to decompose BER and recover metals from WMMs was developed instead of hydrometallurgy or pyrometallurgy simultaneously. Experiments were conducted under external-catalyst-free conditions with temperatures ranging from 350 to 550°C, pressures from 25 to 40 MPa, and reaction times from 120 to 360 min in a semibatch-type reactor. The results showed that BER could be quickly and efficiently decomposed under SCW condition, and the mechanism was possibly free radical reaction. After the SCW treatments, the glass fibers and metal foils in the solid residue could be easily liberated and recovered, respectively. The metal recovery rate reached 99.80%. The optimal parameters were determined as 495°C, 33 MPa, and 305 min on the basis of response surface methodology (RSM). This study provides an efficient and environmental friendly approach for WMMs recycling compared with electrolysis, pyrometallurgy, and hydrometallurgy.

Document Actions

NEWSLETTER

Please subscribe for the new newsletter.

unsubscribe
EXERGY MANIFESTO
SUPPORTED BY
Logo instituto Circe
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática
RELEVANT BOOKS

The Material Limits of Energy Transition: Thanatia

Antonio Valero Capilla, Alicia Valero Delgado and Guiomar Calvo

This book provides a holistic view of raw mineral depletion in the context of renewable energy transistion.

The material limits Thanatia

BUY NOW 

Thanatia. Los límites minerales del planeta

mites minerales del planeta

 Antonio Valero Capilla and Alicia Valero Delgado interviewed by Adrián Almazán

We need a material transition, not only energetic, that restores nature and effectively reuses materials. Gaia must be cared for by extending life on Earth and slowing its degradation towards Thanatia.

Thanatia los limites

BUY NOW

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.