Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Thermodynamic Analysis of Power Generation Cycles With High-Temperature Gas-Cooled Nuclear Reactor and Additional Coolant Heating Up to 1600 °C

Michał Dudek, Zygmunt Kolenda, Marek Jaszczur, and Wojciech Stanek (2018)

Thermodynamic Analysis of Power Generation Cycles With High-Temperature Gas-Cooled Nuclear Reactor and Additional Coolant Heating Up to 1600 °C

Journal of Energy Resources Technology, 140(2).

Nuclear energy is one of the possibilities ensuring energy security, environmental protection, and high energy efficiency. Among many newest solutions, special attention is paid to the medium size high-temperature gas-cooled reactors (HTGR) with wide possible applications in electric energy production and district heating systems. Actual progress can be observed in the literature and especially in new projects. The maximum outlet temperature of helium as the reactor cooling gas is about 1000 °C which results in the relatively low energy efficiency of the cycle not greater than 40–45\\% in comparison to 55–60\\% of modern conventional power plants fueled by natural gas or coal. A significant increase of energy efficiency of HTGR cycles can be achieved with the increase of helium temperature from the nuclear reactor using additional coolant heating even up to 1600 °C in heat exchanger/gas burner located before gas turbine. In this paper, new solution with additional coolant heating is presented. Thermodynamic analysis of the proposed solution with a comparison to the classical HTGR cycle will be presented showing a significant increase of energy efficiency up to about 66\%.

Document Actions


Please subscribe for the new newsletter.

Logo instituto Circe
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática

The Material Limits of Energy Transition: Thanatia

Antonio Valero Capilla, Alicia Valero Delgado and Guiomar Calvo

This book provides a holistic view of raw mineral depletion in the context of renewable energy transistion.

The material limits Thanatia


Thanatia. Los límites minerales del planeta

mites minerales del planeta

 Antonio Valero Capilla and Alicia Valero Delgado interviewed by Adrián Almazán

We need a material transition, not only energetic, that restores nature and effectively reuses materials. Gaia must be cared for by extending life on Earth and slowing its degradation towards Thanatia.

Thanatia los limites


Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.