Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy

Zbigniew Buliński, Ireneusz Szczygieł, Tomasz Krysiński, Wojciech Stanek, Lucyna Czarnowska, Paweł Gładysz, and Adam Kabaj (2017)

Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy

Energy, 141:2559 - 2571.

In the paper, a second order thermodynamic analysis of a small scale alpha-type Stirling engine is presented. The developed mathematical model is based on the Finite Time Thermodynamics (FFT) approach and it is derived from the differential time dependent equations of energy and mass conservation. The engine model consists of three spaces: compression, expansion and regenerator. In contrast to available models, the model presented in this paper assumes polytropic processes in the compression and expansion spaces, which corresponds to the non-ideal heat transfer in these spaces. The results, obtained using the developed second order model, were compared with the results obtained using the Computational Fluid Dynamics (CFD) analysis of the same engine. A very good agreement between the second order model and the CFD model was achieved. Finally, the developed model was applied to analyse potential to recover cryogenic exergy of the Liquefied Natural Gas (LNG). The paper presents the results of the dimensional upscaling of the engine and the influence of the average working pressure. It was revealed that increasing the size of the engine or the average working pressure moves the engine to practically unachievable working conditions.

Mathematical modelling, Alpha-type Stirling engine, Second order analysis, Engine performance, Liquefied natural gas

Document Actions


Please subscribe for the new newsletter.

Logo instituto Circe
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática

The Material Limits of Energy Transition: Thanatia

Antonio Valero Capilla, Alicia Valero Delgado and Guiomar Calvo

This book provides a holistic view of raw mineral depletion in the context of renewable energy transistion.

The material limits Thanatia


Thanatia. Los límites minerales del planeta

mites minerales del planeta

 Antonio Valero Capilla and Alicia Valero Delgado interviewed by Adrián Almazán

We need a material transition, not only energetic, that restores nature and effectively reuses materials. Gaia must be cared for by extending life on Earth and slowing its degradation towards Thanatia.

Thanatia los limites


Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.