Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Exergetic life-cycle assessment (ELCA) for resource consumption evaluation in the built environment

B. D Meester, J. Dewulf, S. Verbekea, A. Janssensb, and H. V Langenhove (2009)

Exergetic life-cycle assessment (ELCA) for resource consumption evaluation in the built environment

Building and Environment 44, 44:11-17.

Resource management becomes a key issue in the development of sustainable technology. This paper envisages a quantification of all energy and material needs for a family dwelling, both for the construction aspects (‘embodied energy and materials’) and usage aspects. To do so, an exergetic life-cycle assessment has been carried out that enables the quantification of all necessary natural energy and material resources simultaneously. The case study covered 65 optimized Belgian family dwelling types with low energy input (56 MJ/(m3 year)). The study shows that cumulative annual exergy demand is of the order of 65 GJexergy/year, with a limited dependency on the construction type: cavity wall, external insulation or wooden frame. For the cavity wall and external insulation building type, nonrenewable inputs are dominant for the construction with 85–86% of the total exergy to be extracted out of the environment. For the wooden frame, non-renewable resource intake for construction remains 62%. Despite the low-energy building type, heating requirements during the use phase are dominant in the overall resource intake with a 60% of the total annual exergy consumption. In order to make family dwellings less fossil resource dependant, the study learns that particularly reduction of heating requirements should be envisaged.

Document Actions


Please subscribe for the new newsletter.

Ministerio de Economía y Competitividad
Ulysea S.L. - Informática

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.