Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Exergy accounting applied to metallurgical systems: The case of nickel processing

Adriana Domínguez, Alicia Valero, and Antonio Valero (2013)

Exergy accounting applied to metallurgical systems: The case of nickel processing

Energy, 62:37–45.

Abstract Exergy accounting of energy and material flows for the two main routes of nickel production (from laterites and sulphides ores) is performed so as to identify the main losses which take place in the overall chain. Accordingly, the chemical exergy of the different raw materials and utilities involved in the production of nickel is calculated. The results show that nickel processing has higher efficiencies when it is produced from sulphides than from laterites. Sulphide ore processing has efficiencies fluctuating from 0.67 to 0.79, depending on the specific technologies utilised. The higher efficiencies are reached when leaching technologies are used and on the contrary if nickel is produced from laterites, the efficiencies achieved are lower on average (0.38) due to the cost-intensive processing. The strengths and weakness of the methodology applied are discussed and compared with the exergoecology approach. If the analysis is carried out with the exergoecology methodology, the cost effectiveness of sulphides against laterites is not so evident.

Nickel mining, Exergy analysis, Metallurgical systems, Exergoecology

Document Actions

NEWSLETTER

Please subscribe for the new newsletter.

unsubscribe
EXERGY MANIFESTO
SUPPORTED BY
iCIRCE_logo
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática
RELEVANT BOOKS

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.