Welcome to the Exergoecology Portal
You are here: Home / Resources / Exergoecology bibliography / Assessment of the Sustainability of Technology by Means of a Thermodynamically Based Life Cycle Analysis

Jo Dewulf and Herman V Langenhove (2002)

Assessment of the Sustainability of Technology by Means of a Thermodynamically Based Life Cycle Analysis

ESPR – Environ Sci & Pollut Res, 9:267-273.

Life cycle analysis is one of the tools in the assessment of the sustainability of technological options. It takes into account all effects on the ecosystem and the population which may endanger the possibilities of current and future generations. However, the main bottleneck in current LCA methodologies is the balancing of different effects, being all quantified on different scales. In this work, a methodology is proposed, which allows one to quantify different effects of the production, consumption and disposal of goods, and services on a single scale. The basis of the methodology is the second law of thermodynamics. All production, consumption and disposal processes affecting the ecosystem and the population, are quantified in terms of loss of exergy. The exergy content of a material is the maximum amount of energy which can be transformed into work at given environmental conditions. Next to the elaboration of the methodology, the new approach is illustrated by examples of the production of synthetic organic polymers, inorganic building insulation materials and different waste gas treatment options.

Document Actions

NEWSLETTER

Please subscribe for the new newsletter.

unsubscribe
EXERGY MANIFESTO
SUPPORTED BY
iCIRCE_logo
Ministerio de Economía y Competitividad
Ulysea S.L. - Informática
RELEVANT BOOKS

Thermodynamics for Sustainable Management of Natural Resources

Cover Thermodynamics

Wojciech Stanek (Editor)

This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management.

Thanatia: The Destiny of the Earth's Mineral Resources

Cover Thanatia

A Thermodynamic Cradle-to-Cradle Assessment by (author): Antonio Valero Capilla and Alicia Valero Delgado

Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.